Proyecto Mirador Foundation

Gold Standard emission reduction calculations

Excerpted from:

REDUCED EMISSIONS FROM COOKING AND HEATING:

Technologies and Practices to Displace Decentralized Thermal Energy Consumption (TPDDTEC)

Method 1. Baseline and project fuel(s) are identical and emission reductions are exclusively from improved efficiency

3.10.4 |When the baseline fuel and the project fuel are the same, the GHG emissions reduction achieved by the project activity in year y shall be calculated as follows:

$$ER_{y} = \sum_{b,p} (N_{b,p,y} \times U_{p,y} \times SFS_{p,b,y} \times NCV_{b,fuel} \times (f_{NRB,b,y} \times EF_{b,f,CO2})$$

$$Eq. 1$$

$$+ EF_{b,f,nonCO2}) - \sum LE_{p,y}$$

Where:

ER_y	 Emission reduction for total project activity in year y (tCO₂e/yr)
$\sum_{b,p}$	= Sum over all relevant baseline b/project p pairs
N _{b,p,y}	 Number of project technology-days included in the project database for baseline b/project p pair in year y (days)
$U_{p,y}$	 Cumulative Usage rate for technologies in project scenario p in year y (fraction)

$SFS_{p,b,y}$	=	Specific fuel savings for an individual project technology of baseline b/project p pair in year y (mass or volume units/technology*day) (Refer to Section 4.1 below for further details)
$NCV_{b,fuel}$	=	Net calorific value of the fuel(s) that is substituted or reduced in baseline b (TJ/mass or volume units)
f _{NRB,b,y}	=	Fractional non-renewability status of woody biomass fuel during year y (fraction). For biomass, it is the fraction of woody biomass that can be established as non-renewable. This parameter is omitted when f is a fossil fuel.
$EF_{b,f,CO2}$	=	CO_2 emission factor from use of fuel <i>f</i> (tCO ₂ /TJ)
$EF_{b,f,nonCO2}$	=	Non-CO ₂ emission factor arising from use of fuel f , when the baseline fuel f is biomass or charcoal (tCO ₂ e/TJ). This parameter is omitted when f is a fossil fuel.
$LE_{p,y}$	=	Leakage for project scenario p in year y (tCO2e/yr)